

Fluid Statics

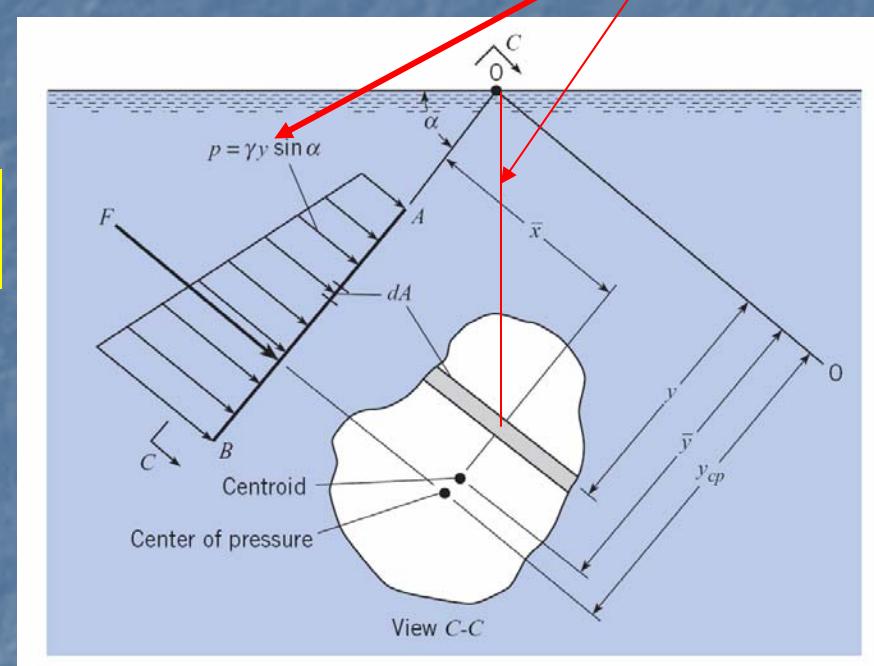
PRESSURE FORCES ON PLANE SURFACES

$$h = y \sin \alpha$$

The resultant hydrostatic force

$$F = \int_A p dA = \int_A \gamma y \sin \alpha dA = \gamma \sin \alpha \int_A y dA = \gamma \bar{y} \sin \alpha A = \bar{p} A$$

Where \bar{p} = pressure at the center of gravity of the surface.



Always Remember $\bar{y} \sin \alpha = h_{CG}$ = Vertical distance from the surface

Fluid Statics

LINE OF ACTION OF RESULTANT VERTICAL HYDROSTATIC FORCE ON PLANE SURFACES

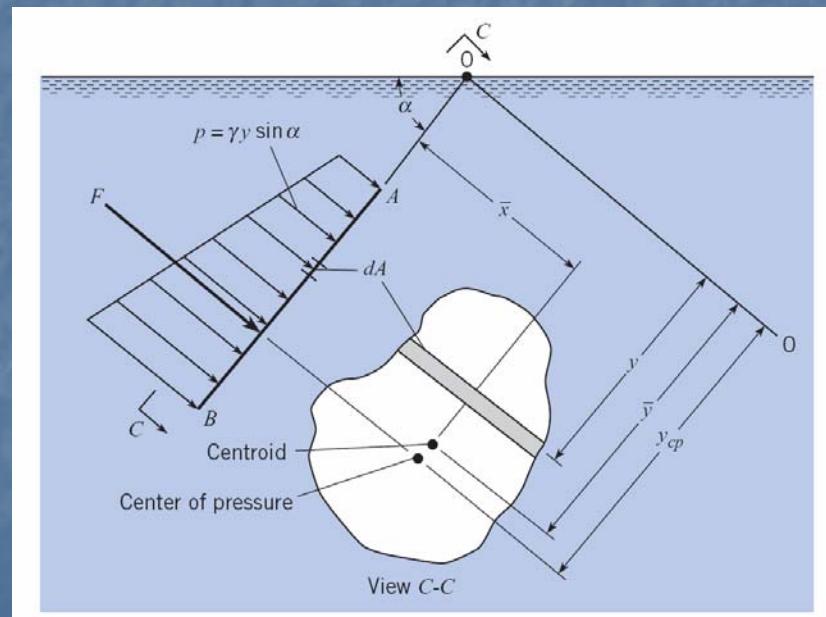
$$y_{cp}F = \int ydF = \int y (pdA) = \int y(\gamma \sin \alpha)dA = \gamma \sin \alpha \int y^2 dA$$

Where $(\int y^2 dA)$ is the second moment of area = $I_0 = \bar{I} + \bar{y}^2 A$

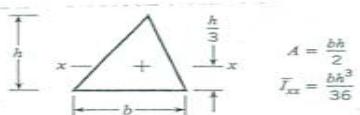
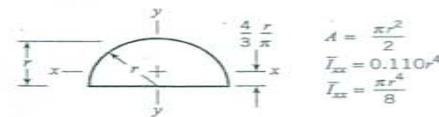
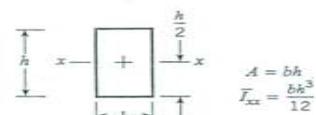
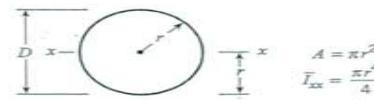
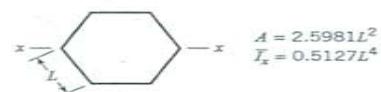
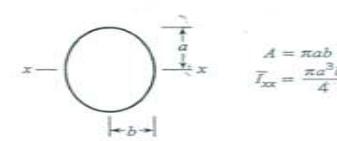
$$y_{cp}F = \gamma \sin \alpha (\bar{I} + \bar{y}^2 A)$$

$$y_{cp}(\gamma \bar{y} \sin \alpha)A = \gamma \sin \alpha (\bar{I} + \bar{y}^2 A)$$

$$y_{cp} - \bar{y} = \frac{\bar{I}}{\bar{y}A}$$



A.1
Centroids and moments of areas of plane areas



Volume and Area Formulas:

$$A_{\text{circle}} = \pi r^2 = \pi D^2/4$$

$$A_{\text{sphere surface}} = \pi D^2$$

$$V_{\text{sphere}} = \frac{1}{6} \pi D^3 = \frac{4}{3} \pi r^3$$

Example(3.12)

Calculate (F) to open the gate

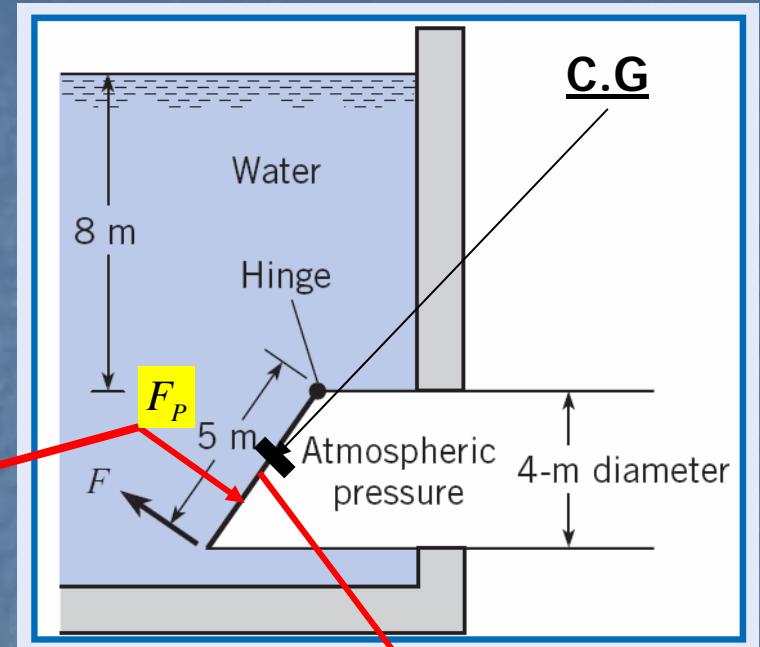
Neglect weight of the gate

Hydrostatic Force due to pressure =

$$F_p = \bar{p}A = \gamma(h_{CG})A = \gamma(\bar{y} \sin \alpha)A$$

$$\sin \alpha = (4/5)$$

Always Remember $\bar{y} \sin \alpha = h_{CG}$ = Vertical distance from the surface



Elliptical gate

$$D = 4\text{m}$$

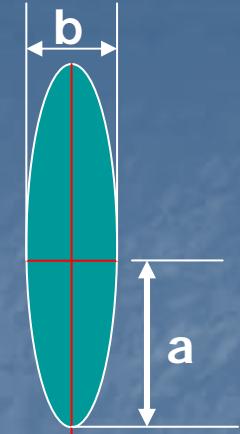
Solution First evaluate the magnitude of the hydrostatic force:

$$F = \bar{p} A$$

The area in question is an ellipse with major and minor axes of 5 m and 4 m. The area is given by the formula $A = \pi ab$ (from Fig. A.1 in the Appendix). Then

$$F = 10 \text{ m} \times 9810 \text{ N/m}^3 \times \pi \times 2 \text{ m} \times 2.5 \text{ m} = 1.541 \text{ MN}$$

$$F_p = \bar{p} A = \gamma(h_{CG})A = \gamma(\bar{y} \sin \alpha)A$$



Now calculate the slant distance between the centroid of the elliptical area and the center of pressure:

$$y_{cp} - \bar{y} = \frac{\bar{I}}{\bar{y}A} = \frac{\frac{1}{4}\pi a^3 b}{\bar{y} \pi ab} = \frac{\frac{1}{4}a^2}{\bar{y}}$$

Here $\bar{y} = 12.5 \text{ m}$ (slant distance from the water surface to the centroid). Thus

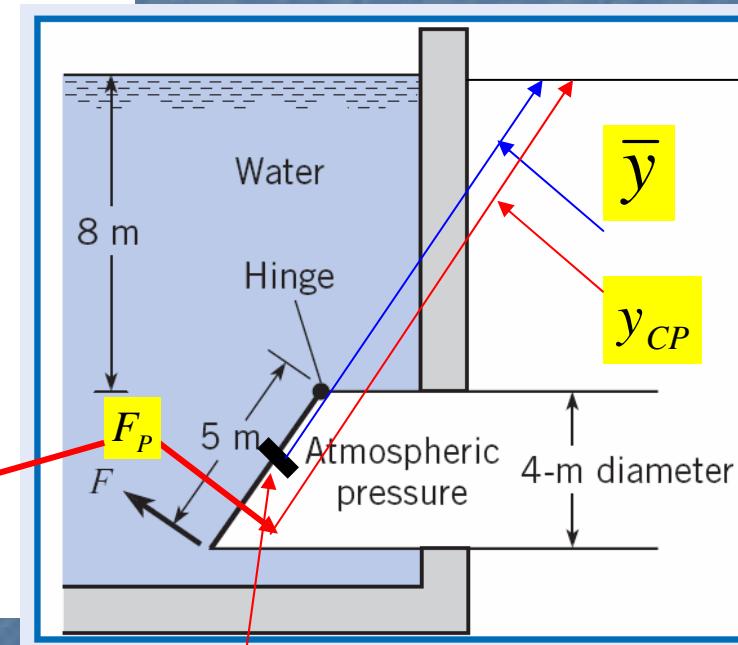
$$y_{cp} - \bar{y} = \frac{1}{4} \times \frac{6.25 \text{ m}^2}{12.5 \text{ m}} = 0.125 \text{ m}$$

Now take moments about the hinge at the top of the gate to obtain F :

$$\sum M_{\text{hinge}} = 0$$

$$1.541 \times 10^6 \text{ N} \times 2.625 \text{ m} - F \times 5 \text{ m} = 0$$

$$F = 809 \text{ kN}$$



Example(3.12)

Determine the magnitude of the hydrostatic force acting on one side of the submerged vertical plate shown in the figure and determine the location of the center of pressure.

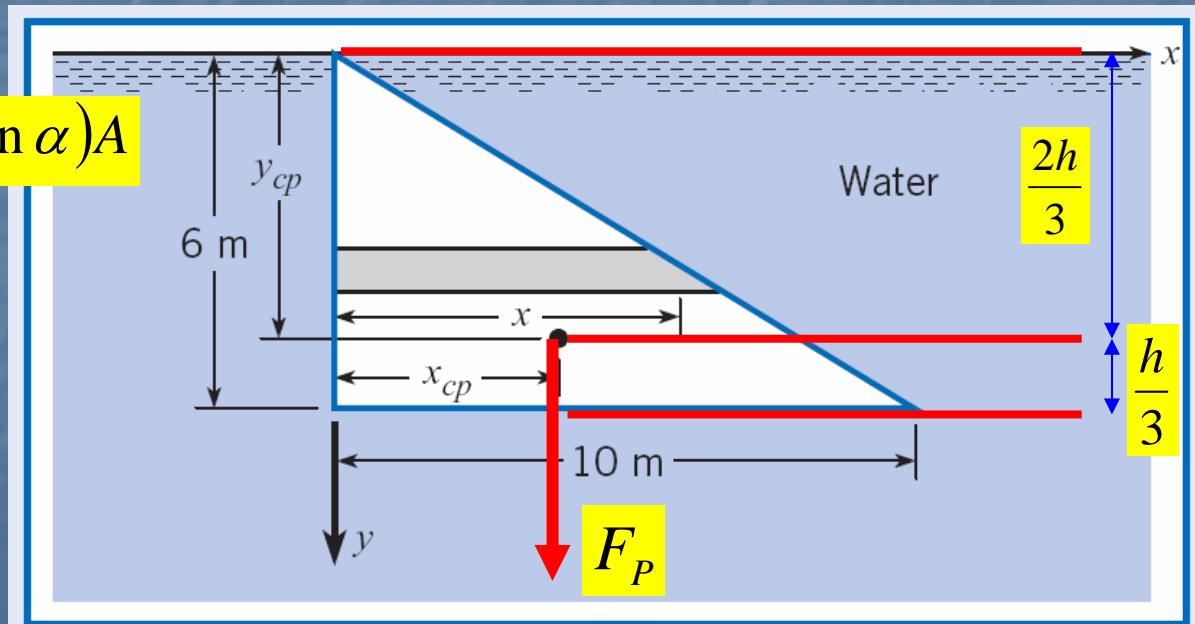
Solution The centroid of the plate is at a depth of 4 m. Therefore $F = 4 \text{ m} \times 9810 \text{ N/m}^3 \times \frac{1}{2} \times 60 \text{ m}^2 = 1.177 \text{ MN}$. The vertical location of the center of pressure is obtained from the center-of-pressure equation:

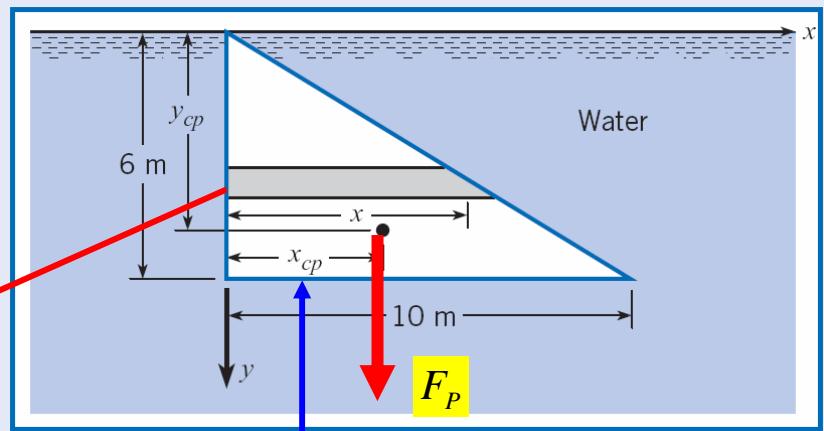
$$y_{cp} - \bar{y} = \frac{\bar{I}}{\bar{y}A} = \frac{bh^3/36}{\bar{y} \frac{1}{2}bh} = \frac{h^2}{18\bar{y}} = \frac{36}{72}$$

$$y_{cp} = 4 + \frac{1}{2} = 4.50 \text{ m}$$

$$F_p = \bar{p}A = \gamma(h_{CG})A = \gamma(\bar{y} \sin \alpha)A$$

Note : $\alpha = 90^\circ$





Vertical edge

Obtain the lateral location of the center of pressure by summing moments of forces acting on the elemental strips and then dividing by F . Moments are taken about the vertical edge:

$$dM = \frac{1}{2} x dF = \frac{1}{2} x \gamma y x dy$$

But

$$x = \frac{10}{6} y$$

so

$$M = \frac{50}{36} \gamma \int_0^6 y^3 dy$$

Then

$$M = \frac{50}{36} (9810 \text{ N/m}^3) \frac{y^4}{4} \Big|_0^6 = 4.414 \text{ MN} \cdot \text{m}$$

But

$$F x_{cp} = M$$

$$\bar{p}$$

$$x_{cp} = \frac{M}{F} = \frac{4.414 \text{ N} \cdot \text{m}}{1.177 \text{ N}} = 3.75 \text{ m}$$

END OF LECTURE
(4)